Giải Thủ Thuật Hướng dẫn Bài tập giá trị lượng giác của một góc bất kì từ 0 đến 180 chân trời sáng tạo Chi Tiết
Pro đang tìm kiếm từ khóa Bài tập giá trị lượng giác của một góc bất kì từ 0 đến 180 chân trời sáng tạo được Cập Nhật vào lúc : 2022-09-20 06:15:25 . Với phương châm chia sẻ Bí quyết về trong bài viết một cách Chi Tiết 2022. Nếu sau khi đọc bài viết vẫn ko hiểu thì có thể lại Comments ở cuối bài để Tác giả giải thích và hướng dẫn lại nha.
Chào bạn Giải SGK Toán 10 trang 65 – Tập 1 sách Chân trời sáng tạo
Nội dung chính
- Bài 2 trang 65Bài 3 trang 65Bài 4 trang 65Bài 5 trang 65Bài 6 trang 65Bài 7 trang 652. QUAN HỆ GIỮA CÁC GIÁ TRỊ LƯỢNG GIÁC CỦA HAI GÓC BÙ NHAU3. GIÁ TRỊ LƯỢNG GIÁC CỦA CÁC GÓC ĐẶC BIỆT4. SỬ DỤNG MÁY TÍNH CẦM TAY ĐỂ TÍNH GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓCVideo liên quan
Giải Toán 10 Bài 1: Giá trị lượng giác của một góc từ 0 đến 180 sách Chân trời sáng tạo là tài liệu vô cùng hữu ích giúp các em học sinh lớp 10 có thêm nhiều gợi ý tham khảo, dễ dàng đối chiếu kết quả khi làm bài tập toán trang 65.
Giải SGK Toán 10 Bài 1 trang 65 Chân trời sáng tạo tập 1 được biên soạn chi tiết, bám sát nội dung trong sách giáo khoa. Mỗi bài toán đều được giải thích cụ thể, chi tiết. Qua đó giúp các em củng cố, khắc sâu thêm kiến thức đã học trong chương trình chính khóa; có thể tự học, tự kiểm tra được kết quả học tập của bản thân. Nội dung chi tiết bài Giải Toán 10 Bài 1: Giá trị lượng giác của một góc từ 0 đến 180 mời các bạn cùng đón đọc tại đây.
Cho biết
. Sử dụng mối liên hệ giữa các giá trị lượng giác của hai góc bù nhau, phụ nhau để tính giá trị của
Gợi ý đáp án
Ta có:
Bài 2 trang 65
Chứng minh các hệ thức sau:
Gợi ý đáp án
a)
b)
Bài 3 trang 65
Tìm góc
trong mỗi trường hợp sau:
d)
không xác định.
Gợi ý đáp án
a) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng
ta có:
b) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng
ta có:
c) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng
ta có:
d) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng ta có:
không xác định với
Bài 4 trang 65
Cho tam giác ABC. Chứng minh rằng:
Gợi ý đáp án
a)
Vậy
b)
Vậy
Bài 5 trang 65
Chứng minh rằng với mọi góc
ta đều có:
Gợi ý đáp án
Trên nửa đường tròn đơn vị, lấy điểm M sao cho
Gọi H, K lần lượt là các hình chiếu vuông góc của M trên Ox, Oy.
Ta có: tam giác vuông OHM vuông tại H và
Do đó:
b)
Ta có:
Với
ta có:
Ta có:
Bài 6 trang 65
Cho góc
với
. Tính giá trị của biểu thức
Gợi ý đáp án
Ta có:
Mà
Bài 7 trang 65
Dùng máy tính cầm tay, hãy thực hiện các yên cầu dưới đây:
a) Tính
b) Tìm
,trong các trường hợp sau:
Gợi ý đáp án
a)
b)
Khám phá 1: Trong mặt phẳng tọa độ Oxy, nửa đường tròn tâm O bán kính R = 1 nằm phía trên trục hoành được gọi là nửa đường tròn đơn vị. Cho trước một góc nhọn $alpha$, lấy điểm M trên nửa đường tròn đơn vị sao cho $widehatxOM$ = $alpha$. Giả sử điểm M có tọa độ ($x_0$; $y_0$). Trong tam giác vuông OHM, áp dụng cách tính các tỉ số lượng giác của một góc nhọn đã học ở lớp 9, chứng tỏ rằng:
sin$alpha$ = $y_0$; cos$alpha$ = $x_0$; tan$alpha$ = $fracy_0x_0$; cot$alpha$ = $fracx_0y_0$
Hướng dẫn giải:
Xét tam giác OMH vuông tại H, ta có:
- sin$alpha$ = $fracMHOM$ = $fracy_0R$ = $fracy_01$ = $y_0$cos$alpha$ = $fracOHOM$ = $fracx_0R$ = $fracx_01$ = $x_0$tan$alpha$ = $fracsinalphacosalpha$ = $fracy_0x_0$cot$alpha$ = $fraccosalphasinalpha$ = $fracx_0y_0$
Thực hành 1: Tìm giá trị lượng giác góc $135^circ$
Hướng dẫn giải:
Lấy điểm M trên nửa đường tròn đơn vị sao cho $widehatxOM$ = $135^circ$. Ta có: $widehatMOy$ = $135^circ$ – $90^circ$ = $45^circ$.
Lại có: sin$45^circ$ = $fracsqrt22$; cos$45^circ$ = $fracsqrt22$
$Rightarrow$ Tọa độ điểm M là $left ( – fracsqrt22; fracsqrt22 right)$.
Vậy theo định nghĩa ta có:
- sin$135^circ$ = $fracsqrt22$; cos$135^circ$ = – $fracsqrt22$tan$135^circ$ = -1; cot$135^circ$ = -1
2. QUAN HỆ GIỮA CÁC GIÁ TRỊ LƯỢNG GIÁC CỦA HAI GÓC BÙ NHAU
Khám phá 2: Trên nửa đường tròn đơn vị, cho dây cung NM song song với trục Ox (Hình 4). Tính tổng số đo của hai góc $widehatxOM$ và $widehatxON$.
Hướng dẫn giải:
Gọi H là chân đường vuông góc hạ từ N xuống Ox.
Vì $widehatxOM$ = $widehatHON$ nên $widehatxOM$ + $widehatxON$ = $widehatHON$ + $widehatxON$ = $widehatHOx$ = $180^circ$
Thực hành 2: Tính các giá trị lượng giác: sin$120^circ$; cos$150^circ$, cot$135^circ$
Hướng dẫn giải:
- sin$120^circ$ = sin$(180^circ – 60^circ)$ = $fracsqrt32$ cos$150^circ$ = -cos$30^circ$ = – $fracsqrt32$ cot$135^circ$ = -cot$45^circ$ = -1
Vận dụng 1: Cho biết sin$alpha$ = $frac12$, tìm góc $alpha$ ($0^circ leq alpha leq 180^circ$) bằng cách vẽ nửa đường tròn đơn vị).
Hướng dẫn giải:
Theo định nghĩa, sin$alpha$ = $y_0$ = $frac12$. Ta có hình vẽ:
Đo $alpha$ = $30^circ$
3. GIÁ TRỊ LƯỢNG GIÁC CỦA CÁC GÓC ĐẶC BIỆT
Thực hành 3: Tính:
A = sin$150^circ$ + tan$135^circ$ + cot$45^circ$;
B = 2cos$30^circ$ – 3tan$150^circ$ + cot$135^circ$
Hướng dẫn giải:
A = sin$150^circ$ + tan$135^circ$ + cot$45^circ$
= $frac12$ + (-1) + 1 = $frac12$
B = 2cos$30^circ$ – 3tan$150^circ$ + cot$135^circ$
= 2.$fracsqrt32$ – 3.(- $fracsqrt33$ + (-1) = -1 + 2$sqrt3
Vận dụng 2: Tìm góc $alpha$ ($0^circ leq alpha leq 180^circ$) trong mỗi trường hợp sau:
a. sin$alpha$ = $fracsqrt32$;
b. cos$alpha$ = $frac-sqrt22$;
c. tan$alpha$ = -1;
d. cot$alpha$ = -$sqrt3$
Hướng dẫn giải:
a. $alpha$ = $60^circ$ hoặc $alpha$ = $120^circ$
b. $alpha$ = $135^circ$
c. $alpha$ = $135^circ$
d. $alpha$ = $150^circ$
4. SỬ DỤNG MÁY TÍNH CẦM TAY ĐỂ TÍNH GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC
Thực hành 4:
a. Tính cos$80^circ$43’51”; tan$47^circ$12’25”; cot$99^circ$9’19”.
b. Tìm $alpha$ ($0^circ leq alpha leq 180^circ$), biết cos$alpha$ = -0.723
Hướng dẫn giải:
a.
- cos$80^circ$43’51” $approx$ 0,161tan$47^circ$12’25” $approx$ 1,08cot$99^circ$9’19” $approx$ -0,161
b. $alpha$ $approx$ $136^circ$18’10”
Page 2
Bài tập 1. Cho biết sin$30^circ$ = $frac12$; sin$60^circ$ = $fracsqrt32$; tan$45^circ$ = 1. Sử dụng mối liên hệ giữa các giá trị lượng giác của hai góc bù nhau, phụ nhau để tính giá trị của E = 2cos$30^circ$ + sin$150^circ$ + tan$135^circ$.
E = 2cos$30^circ$ + sin$150^circ$ + tan$135^circ$
= 2sin$60^circ$ + sin$30^circ$ – tan$45^circ$
= 2. $fracsqrt32$ + $frac12$ – 1 = $frac-1 + 2sqrt32$
Tải thêm tài liệu liên quan đến bài viết Bài tập giá trị lượng giác của một góc bất kì từ 0 đến 180 chân trời sáng tạo
Khỏe Đẹp
Bài tập
Cryto
Giá
Reply
6
0
Chia sẻ
Video Bài tập giá trị lượng giác của một góc bất kì từ 0 đến 180 chân trời sáng tạo ?
Bạn vừa đọc bài viết Với Một số hướng dẫn một cách chi tiết hơn về Video Bài tập giá trị lượng giác của một góc bất kì từ 0 đến 180 chân trời sáng tạo mới nhất
Share Link Down Bài tập giá trị lượng giác của một góc bất kì từ 0 đến 180 chân trời sáng tạo miễn phí
Bạn đang tìm một số Share Link Down Bài tập giá trị lượng giác của một góc bất kì từ 0 đến 180 chân trời sáng tạo Free.
Giải đáp thắc mắc về Bài tập giá trị lượng giác của một góc bất kì từ 0 đến 180 chân trời sáng tạo
Nếu Bạn sau khi đọc bài viết Bài tập giá trị lượng giác của một góc bất kì từ 0 đến 180 chân trời sáng tạo , bạn vẫn chưa hiểu thì có thể lại bình luận ở cuối bài để Admin giải thích và hướng dẫn lại nha
#Bài #tập #giá #trị #lượng #giác #của #một #góc #bất #kì #từ #đến #chân #trời #sáng #tạo